Gaussian interval quadrature rule for exponential weights

نویسندگان

  • Aleksandar S. Cvetkovic
  • Gradimir V. Milovanovic
چکیده

Interval quadrature formulae of Gaussian type on R and R+ for exponential weight functions of the form w(x) = exp(−Q(x)), where Q is a continuous function on its domain and such that all algebraic polynomials are integrable with respect to w, are considered. For a given set of nonoverlapping intervals and an arbitrary n, the uniqueness of the n-point interval Gaussian rule is proved. The results can be applied also to corresponding quadratures over (−1, 1). An algorithm for the numerical construction of interval quadratures is presented. Finally, in order to illustrate the presented method, two numerical examples are done.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Gaussian Quadrature Rules over Two-dimensional Regions with a Curved Exponential Edge

This paper presents a generalized Gaussian quadrature method for numerical integration over two-dimensional bounded regions with a curved exponential edge. A general formulae for numerical integration over the regions R1 = {(x,y)|a ≤ x ≤ b, c ≤ y ≤ e} and R2 = {(x,y)|a ≤ y ≤ b, c ≤ x ≤ e} are derived, which can be directly used for integrating any type of functions over such regions. In order t...

متن کامل

Numerical Quadrature Rules for Some Infinite Range Integrals

Recently the present author has given a new approach to numerical quadrature and derived new numerical quadrature formulas for finite range integrals with algebraic and/or logarithmic endpoint singularities. In the present work this approach is used to derive new numerical quadrature formulas for integrals of the form J"£" x"e~xf(x) dx and J"o° x"Ep(x)f(x) dx, where Ef(x) is the exponential int...

متن کامل

On Generalized Gaussian Quadratures\ for Exponentials and Their Applications

We introduce new families of Gaussian-type quadratures for weighted integrals of exponential functions and consider their applications to integration and interpolation of bandlimited functions. We use a generalization of a representation theorem due to Carathéodory to derive these quadratures. For each positive measure, the quadratures are parameterized by eigenvalues of the Toeplitz matrix con...

متن کامل

A Gaussian quadrature rule for oscillatory integrals on a bounded interval

We investigate a Gaussian quadrature rule and the corresponding orthogonal polynomials for the oscillatory weight function ei!x on the interval [ 1, 1]. We show that such a rule attains high asymptotic order, in the sense that the quadrature error quickly decreases as a function of the frequency !. However, accuracy is maintained for all values of ! and in particular the rule elegantly reduces ...

متن کامل

Positivity of the Weights of Extended Gauss-Legendre Quadrature Rules

We show that the weights of extended Gauss-Legendre quadrature rules are all positive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012